Clouding up the Internet:

how centralized is DNS traffic becoming?

Giovane C. M. Moura (1), Sebastian Castro (2), Wes Hardaker (3), Maarten Wullink (1) and Cristian Hesselman (1,4)

RIPE 81

2020-10-27 Virtual Conference

1: SIDN Labs

2: InternetNZ

3: USC/ISI

4: University of Twente

UNIVERSITY OF TWENTE.

Irony of online conferences

Paper being presented simultaneously at ACM IMC 2020 and RIPE81

https://conferences.sigcomm.org/imc/2020/ and https://ripe81.ripe.net/

Internet centralization concerns: DoJ (Oct. 2020)

Internet centralization concerns: EU (July 2020)

'This Is a New Phase': Europe Shifts Tactics to Limit Tech's Power

The region's lawmakers and regulators are taking direct aim at Amazon, Facebook, Google and Apple in a series of proposed laws.

source: https://www.nytimes.com/2020/07/30/technology/
europe-new-phase-tech-amazon-apple-facebook-google.html

Internet centralization concerns: US Congress (Oct. 2020)

The New York Times

House Lawmakers Condemn Big Tech's 'Monopoly Power' and Urge Their Breakups

In a report led by Democrats, lawmakers said Apple, Amazon, Google and Facebook needed to be checked and recommended they be restructured and that antitrust laws be reformed.

Internet centralization concerns: IETF members (Nov. 2019)

```
[Docs] [txt|pdf] [Tracker] [Email] [Nits]
Versions: 00
Network Working Group

    Arkko

Internet-Draft
                                                                 Fricsson
Intended status: Informational
                                                        November 05, 2019
Expires: May 8, 2020
          Centralised Architectures in Internet Infrastructure
           draft-arkko-arch-infrastructure-centralisation-00
Abstract
  Centralised deployment models for Internet services and Internet
  business consolidation are well-known Internet trends, at least when
  it comes to popular and user-visible service. This memo discusses
   the impacts of similar trends within the Internet infrastructure, on
   functions such as DNS resolution.
```

Source: https://tools.ietf.org/html/draft-arkko-arch-infrastructure-centralisation-00

This was the **inspiration** for this paper

Internet centralization concerns: IETF members (Nov. 2019)

```
[Docs] [txt|pdf] [Tracker] [Email] [Nits]
Versions: 00
Network Working Group

    Arkko

Internet-Draft
                                                                 Fricsson
Intended status: Informational
                                                        November 05, 2019
Expires: May 8, 2020
          Centralised Architectures in Internet Infrastructure
           draft-arkko-arch-infrastructure-centralisation-00
Abstract
  Centralised deployment models for Internet services and Internet
  business consolidation are well-known Internet trends, at least when
  it comes to popular and user-visible service. This memo discusses
   the impacts of similar trends within the Internet infrastructure, on
   functions such as DNS resolution.
```

Source: https://tools.ietf.org/html/draft-arkko-arch-infrastructure-centralisation-00

This was the **inspiration** for this paper

Centralization poses various risks

- Creates a single point of failure
- Privacy
- Monopoly, consolidation

The New York Times Hackers Used New Weapons to Disrupt Major Websites Across U.S.

DYN DNS 2016 Attack

source: https://www.nytimes.com/2016/10/22/
business/internet-problems-attack.html

Centralization poses various risks

- Creates a single point of failure
- Privacy
- Market consolidation

Amazon Route 53 (DNS) 2019 Attack

source: https://www.infosecurity-magazine.com/
news/aws-customers-hit-by-eighthour-ddos/

Can we measure Internet Centralization?

Easier said than done.

Measure it in terms of?

- Users?
- Traffic?
- Networking infrastructure?
- Computing infrastructure?
- Market share?
- ..

Our approach:

- We focus on DNS traffic
- But NOT on user traffic
- We focus on traffic from resolvers to authoritative servers

Can we measure Internet Centralization?

Easier said than done.

Measure it in terms of?

- Users?
- Traffic?
- Networking infrastructure?
- Computing infrastructure?
- Market share?
- ..

Our approach:

- We focus on DNS traffic
- But **NOT** on user traffic
- We focus on traffic from resolvers to authoritative servers

What we measure: DNS queries to authoritative DNS servers

The Netherlands (.nl)

17.1M inhabitants 6M domain names (.nl) Continent: Europe Official language: Dutch

New Zealand (.nz)

4.8 M inhabitants 700k domain names (.nz) Continent: Oceania Official language: English, Maori

B-Root

World
7.8 Billion inhabitants
1588 TLDs
Continents: 7
Language: *

What we measure: DNS queries from

From 5 Cloud/Content Providers

Company	ASes	Public DNS?
Google	15169	Yes
Amazon	7224, 8987, 9059, 14168, 16509	No
Microsoft	3598,6584, 8068–8075, 12076, 23468	No
Facebook	32934	No
Cloudflare	13335	Yes

Datasets: 55 Billion Queries, 1week/year, 3 years

		.nl			
Week	Queries(total)	Queries (valid)	Resolvers	ASes	
w2018	7.29B	6.53B	2.09M	41276	
w2019	10.16B	9.05B	2.18M	42727	
w2020	13.75B	11.88B	1.99M	41716	
		. nz			
Week	Queries(total)	Queries (valid)	Resolvers	ASes	
w2018	2.95B	2.00B	1.28M	37623	
w2019	3.48B	2.81B	1.42M	39601	
w2020	4.57B	3.03B	1.31M	38505	
	b.root-servers.net				
Date	Queries(total)	Queries (valid)	Resolvers	ASes	
2018/04/10	2.68B	0.93B	4.23M	45210	
2019/04/09	4.13B	1.43B	4.13M	48154	
2020/05/06	6.70B	1.34B	6.01M	51820	

So, what did we find?

Traffic to b.root-servers.net

Traffic to .nz

Traffic to .nl

5 clouds \rightarrow 1/3 of ccTLDs traffic

- The 5 clouds account for roughly 1/3 of all queries to .nl and .nz
 - .nl and .nz see 40k+ Autonomous Systems in total
- b.root-servers.net receives less, with than 9% of traffic from clouds
 - likely affected by tons of chromium-based garbage [5, 6]
- Oddity: Google sends more traffic to .nl than .nz

What do clouds dream of when visiting the Netherlands?

What do clouds dream of when visiting New Zealand?

What do clouds dream of when visiting the Root?

What did clouds dream of in 2018?

What do clouds dream of in 2019?

What do clouds dream of in 2020?

What do clouds dream of?

Resource Records per Cloud provider

Mostly A records, but...

What do they ask for?

- Google sends more NS queries in 2020 than in 2018
- Why?
 - QNAME-minimization [4]
 - Q-min first query for the NS records
- We confirmed with Google that they deployed QNAME-minimization in Dec. 2019

Identifying when Google deployed RFC7816

- As Google deployed QNAME-minimization it created a visible shift in query types
- Centralization pro: new security feature deployments benefits many users all at once
 - DNSSEC validation
 - QNAME-minimization

Queries distribution per month for Google.

And most Google queries are from Google Public DNS

	.n	1	.nz		
	Queries	Resolv.	Queries	Resolv.	
Total	1.81B	23943	328.7M	21230	
Pub. DNS	1.57B	3750	290.7M	3840	
Rest	0.24B	23943	38.0M	17390	
Ratio Pub.	86.5%	15.6%	88.4%	18.7%	

Table 2: Queries from Google on w2020

- But not most resolvers...
- Anyone can spin a resolver on Google Cloud

Junk queries sent to .NL from clouds

Junk queries sent to .NZ from clouds

Junk queries sent to b.root-servers.net from clouds

Junk queries raining from the clouds

- Junk: queries received for non-authoritative domains
- Distribution varies widely per zone
- ccTLDs: clouds send junk as all ASes do
- reduction in junk in junk levels to b.root-servers.net in 2020:
 - Proportionally, less junk from clouds
 - NSEC aggressive caching?
 - Chromium deployments now dominates root junk

Measuring Cloud Technology Adoption

- DNSSEC
- IPv4 vs IPv6
- UDP vs TCP

source: https:

//www.flickr.com/photos/anguskirk/4817305157

DNSSEC

- DNSSEC provides authenticity and integrity [1, 3, 2].
- Do clouds use it equally?
 - They need DS and DNSKEY records

w2020: .nl

- Adoption measured by DNSKEY queries:
 - Microsoft: 0.02M / 1.1B
 - Cloudflare: 11M / 460M

IPv4 vs IPv6 Adoption

- Roughly 50/50%:
 Google, Cloudflare
- More IPv6: Facebook (2019 onwards)
- Very little IPv6:
 Microsoft, Amazon

		.nl		.nz	
	Year	IPv4	IPv6	IPv4	IPv6
Google	2018	0.66	0.34	0.61	0.39
	2019	0.49	0.51	0.54	0.46
	2020	0.52	0.48	054	0.46
Amazon	2018	1	0	1	0
	2019	0.98	0.02	0.97	0.03
	2020	0.97	0.03	0.96	0.04
Microsoft	2018	1	0	1	0
	2019	1	0	1	0
	2020	1	0	1	0
Facebook	2018	0.52	0.48	0.51	0.49
	2019	0.24	0.76	0.19	0.81
	2020	0.24	0.76	0.17	0.83
Cloudflare	2018	0.54	0.46	0.54	0.46
	2019	0.57	0.43	0.56	0.44
	2020	0.51	0.49	0.49	0.51

MS and AWS IPv6 adoption: why so few IPv6 queries

• far fewer IPv6 resolvers (unique IPs)

Table 3: Amazon and Microsoft resolvers (Week 2020)

Facebook sites with more IPv6: RTT sensitive

(ak) Facebook Location vs Queries to .nl.

UDP vs TCP

- UDP dominates
- TCP for large queries
- Facebook does more TCP (from 2019 onwards).
 Why?

		.nl		.nl		. r	ız
	Year	UDP	TCP	UDP	TCP		
Google	2018	1	0	1	0		
	2019	1	0	1	0		
	2020	1	0	1	0		
Amazon	2018	1	0	0.98	0.02		
	2019	0.98	0.02	0.96	0.04		
	2020	0.95	0.05	0.95	0.05		
Microsoft	2018	1	0	1	0		
	2019	1	0	1	0		
	2020	1	0	1	0		
Facebook	2018	0.79	0.21	0.52	0.48		
	2019	0.85	0.15	0.83	0.17		
	2020	0.86	0.14	0.85	0.15		
Cloudflare	2018	1	0	1	0		
	2019	0.99	0.01	1	0		
	2020	0.98	0.02	0.99	0.01		

Why Facebook queries more TCP than others

- 1/3 of Facebook queries:
 EDNS(0) UDP size < 1024
- Sometimes caused truncated answers
- TCP required afterward

CDF of EDNS(0) UDP message size for .nl (w2020).

Conclusion: Clouds ain't all the same

- DNS concentration:
 5 Clouds, 1/3 of ccTLD queries
- Technology adoption varies significantly
 - DNSSEC
 - Transport
 - Routing
- Centralization
 - Pro: new security feature deployments benefits many users all at once
 - Con: if it breaks, it can affect many users all at once
- Questions?

real-world cloud types

Paper (IMC2020):

Download it here

References i

[1] ARENDS, R., AUSTEIN, R., LARSON, M., MASSEY, D., AND ROSE, S.

DNS Security Introduction and Requirements.

RFC 4033, IETF, Mar. 2005.

[2] ARENDS, R., AUSTEIN, R., LARSON, M., MASSEY, D., AND ROSE, S. Protocol Modifications for the DNS Security Extensions.

REC 4035 JETE Mar. 2005

RFC 4035, IETF, Mar. 2005.

References ii

[3] ARENDS, R., AUSTEIN, R., LARSON, M., MASSEY, D., AND ROSE, S.

Resource Records for the DNS Security Extensions.

RFC 4034, IETF, Mar. 2005.

[4] BORTZMEYER, S.

DNS Query Name Minimisation to Improve Privacy.

RFC 7816, IETF, Mar. 2016.

References iii

[5] HARDAKER, W.

What's in a name?

```
https://blog.apnic.net/2020/04/13/whats-in-a-name/.
```

[6] THOMAS, M.

Chromium's impact on root dns traffic.

```
https://blog.apnic.net/2020/08/21/chromiums-impact-on-root-dns-traffic/.
```